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ABSTRACT 
 

Fibrous porous materials involve in many natural and engineering processes. In this study, the permeability of ordered fibrous 
media towards normal and parallel flows is studied numerically. Porous material is represented by a “unit cell” which is assumed to 
be repeated throughout the media and 1D fibers are modeled as a combination of Channel-like conduits. The numerical results are 
successfully compared with the experimental data collected by others and existing correlations in the pertinent literature, for square 
arrangement of fibers over a wide range of porosity. A compact correlation is proposed for parallel permeability of fibrous media, 
which can predict the results accurately over the entire range of porosity. Moreover, microscopic velocity profiles in the unit cell are 
investigated in detail for both parallel and normal flows. The numerically predicted velocity distributions for normal and parallel 
flow cases are compared with experimental and simple parabolic profiles. The comparison showed that although assumption of the 
parabolic velocity distribution results in reasonable values for permeability, this form of the velocity profile is not realistic. 

 
NOMENCLATURE 

݀ ൌ Fiber diameter, ݉ 
ܭ ൌ Viscous permeability, ݉ଶ 
כܭ ൌ Non-dimensional permeability, כܭ ൌ  ଶ݀/ܭ
ܮ ൌ Unit cell length in Eq. (3), ݉ 
ܲ ൌ Pressure, ܲܽ  
ܳ ൌ Volumetric flow rate, ݉ଷ/ݏ 
ܵ ൌ Distance between adjacent fibers in square 

arrangement, ݉ 
ݑ ൌ Velocity in ݔ-direction, ݉/ݏ 

ܷ஽ ൌ Volume-averaged superficial velocity, ݉/ݏ 
ݓ ൌ Velocity in ݖ-direction, ݉/ݏ 

Greek symbols 
ߜ ൌ Distance between adjacent fibers in square 

arrangement in ݕ-direction, ݉ 
ߝ ൌ Porosity 
ߤ ൌ Fluid viscosity, ܰ.  ଶ݉/ݏ
߮ ൌ Solid volume fraction, ߮ ൌ 1 െ  ߝ

INTRODUCTION 

Fibrous porous materials have applications in several 
engineering areas including: filtration and separation of 
particles, physiological systems, composite fabrication, heat 
exchangers, thermal insulations, and fuel cells [1-3]. 
Transport phenomena in porous media have been the focus of 
numerous studies since 19th century, which indicates the 
importance of this topic. Prediction of the velocity-field plays 
a key role in estimating the properties of porous media e.g. 
permeability. This can be achieved by using Darcy’s equation 
which assumes a linear relationship between the volume-
averaged superficial fluid velocity, ܷ஽, and the pressure 
gradient: 
െܲ׏ ൌ ఓ

௄
ܷ஽  (1)

where, ߤ is the fluid viscosity and ܭ is the permeability of the 

medium. Darcy’s relationship is empirical, convenient, and 
widely accepted. However, Darcy’s equation holds when 
flow is in creeping regime [4]. To use Darcy’s equation we 
need to know the permeability of the medium beforehand. 
Permeability, a measure of the flow conductance of the solid 
matrix, depends on several factors including: porosity, 
particles shape and size distribution and particles 
arrangement. The permeability is calculated either 
experimentally or through microscopic analysis of porous 
media.  

Studies on the permeability of fibrous media dates back to 
experimental works of Carman [5] and Sullivan [6] in 1940s 
and theoretical analyses of Kuwabara [7], Hasimoto [8], 
Happel and Brenner [9], and Sparrow and Loeffler [10] in 
1950s. Kuwabara [7], solving vorticity transport and stream 
function equations and employing limited boundary layer 
approach, predicted the permeability of flow normal to 
randomly arranged fibers for materials with high porosities. 
Hasimoto [8] and Sparrow and Loeffler [10] used series 
solutions for determining the permeability of ordered 
arrangement of cylinders to normal and parallel flow, 
respectively. Happel and Brenner [9] analytically solved the 
Stokes equation for parallel and normal flow to a single 
cylinder with free surface model (limited boundary layer). 
The boundary conditions used by Happel and Brenner [9] 
were different from the Kuwabara’s study [7]. They [9] 
hypothesized that the flow resistance of a random 3D fibrous 
structure is equal to one third of the parallel plus two third of 
the normal flow resistances of 1D array of cylinders [4]. 
Later, Sangani and Acrivos [11], performed analytical and 
numerical studies on viscous permeability of square and 
staggered arrays of cylinders for the entire range of porosity, 
when their axes were perpendicular to the flow direction. 
Their analytical models were accurate for the lower and 
higher limits of porosity [11]. Sangani and Yao [12] extended 
the studies of [11] to random media and reported numerical 
results for the permeability of random 1D fibers towards 
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normal and parallel flows. Drummond and Tahir [13] solved 
Stokes equations for normal and parallel flow towards 
different ordered structures. They used a distributed 
singularities method to find the flow-field in square, 
triangular, hexagonal and rectangular arrays. They [13] 
compared their results with numerical values of Sangani and 
Acrivos [11] for normal flow and Happel and Brenner [9] for 
the parallel case. The model of Drummond and Tahir [13] for 
normal permeability was very close to the analytical model of 
Sangani and Acrivos [11], thus, it is only accurate for highly 
porous materials [13]. Sahraoui and Kaviani [14] included 
inertial effects and numerically determined the permeability 
of cylinders to normal flow. They also proposed a correlation 
which was accurate in limited range of porosity, i.e., 0.4 ൏
ߝ ൏ 0.7. Using numerical simulations, Van der Westhuizen 
and Du Plessis [15] proposed a correlation for the normal 
permeability of 1D fibers. Theoretical prediction of the 
permeability of general triangular arrangement was presented 
by Hellou et al. [16]. They also proposed a correlation for 
determination of permeability of periodic triangular 
arrangements. Recently, Sobera and Kleijn [17] studied the 
permeability of random 1D and 2D fibrous media both 
analytically and numerically. Their analytical model was a 
modification of the scale analysis proposed by Clauge et al. 
[1]. A comparison of the model of Sobera and Kleijn [17] 
with numerical results showed that their model was accurate 
in highly porous materials [17]. However, the difference in 
low porosities was significant. The reported relationship for 
permeability of random fibers was a function of fibers 
distance and a non-dimensional randomness number [17]. 
Several investigations were devoted to quantifying the 
permeability of random fibrous media, i.e., real materials. 
Several researchers related the permeability of random media 
to the values of parallel and normal permeability of 1D fibers. 
The model proposed by Jackson and James [18] was based on 
this approach. However, limitations of this model were 
shown in the literature [2]. Tomadakis and Sotirchos [19] 
proposed a model for anisotropic permeability through 1D, 
2D, and 3D overlapping random fibrous beds. Although the 
model of [19] were meant to cover all types of random 
fibrous media, in some cases the errors between the model 
and experimental data were considerable; see Ref. [2] for 
more details. Using the similarity between permeability and 
electrical conduction in porous media, Avellaneda and 
Torquato [20] proposed an upper bound for the permeability 
of fibrous media. Later, Tomadakis and Robertson [2] 
showed that this bound was violated by several data points 
available in the literature. Using experimental data, 
Tomadakis and Robertson [2] stated that the upper and lower 
bounds for fibrous media with random orientation of fibers 
were normal and parallel permeability of 1D arrangements.  

Several experimental studies have been conducted for 
determination of the permeability of fibrous media [22-28]. 
Comprehensive reviews of these experimental works are 
available in Jackson and James [18], Astrom et al. [29], and 
Tomadakis and Robertson [2].  

Our literature review can be summarized:  
1) Less attention has been paid to determination of parallel 

permeability of ordered fibrous materials  
2)A majority of the existing correlations for permeability 

are based on curve-fitting of experimental or numerical data, 
i.e., not based on analytical modelings 

3) Most of the theoretical models found in the literature are 
not general and fail to predict the permeability over the entire 
range of porosity  

4) In most of analytical investigations micro-scale velocity 
distribution has not been verified. 

In most engineering applications prediction of the exact 
velocity profile is not necessary and knowing the 
macroscopic properties such as permeability is sufficient; 
however, microscopic flow-field is needed for determining 
important phenomena such as particle deposition and mass 
transfer rates.  

Recently, Tamayol and Bahrami [21] studied permeability 
of touching and non-touching ordered fibrous media towards 
normal and parallel flow. Analytical models were developed 
using the concept of “unit cell” and introducing an “integral 
technique”. Assuming a parabolic velocity profile within the 
unit cells and integrating the continuity and momentum 
equations, compact analytical relationships were reported for 
pressure drop and permeability of considered patterns [21]. 
They [21] also showed that the proposed normal flow 
permeability of square unit cell predicts the trends observed 
in experimental data and serves as a lower bound for the 
permeability of fibrous media. The proposed model was 
successfully validated against experimental data collected 
from several sources over a wide range of porosity, fibrous 
materials, and fluids. Due to lack of experimental data for 
parallel permeability, Tamayol and Bahrami [21] were not 
able to verify their model for this problem. 

The objectives of the present study are: 
1) Develop numerical simulations to study the details of 

velocity field in ordered fibrous media. This will provide an 
independent means to verify our previous study [21] 

2) Use of the numerical results for verifying the parallel 
flow model where a lack of experimental data exists in the 
literature. 

In this study the unit cell concept is used to determine the 
normal and parallel permeability of 1D fibrous media 
numerically; governing equations are solved using Fluent 
software [30]. Using the predicted values of pressure drop 
and relevant permeabilites, a compact correlation is also 
proposed for parallel permeability of 1D fibers which is easy-
to-use and more importantly accurate over the entire range of 
porosity. Second part of the paper is devoted to comparison 
of the calculated velocity profiles with those assumed by 
Tamayol and Bahrami [21] and the experimental data 
reported by Zhong et al. [27].  

MODELING APPROACH 

Darcy’s relationship, Eq. (1), is valid when the flow 
passing through pores is in creeping regime, i.e., inertial 
effects are negligible. Therefore, the Stokes and continuity 
equations govern the flow-field. The flow is also assumed to 
be incompressible, steady state and porous media is 
completely saturated. We used Fluent software [30]; since 
this software solves complete Navier-Stokes (NS) equations, 
the flow Reynolds number should be kept sufficiently low to 
ensure negligible effects of inertial terms. Therefore, the inlet 
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velocity is set low enough to guarantee that the Reynolds 
number based on the fibers diameter, ݀, is below 0.05 for all 
cases; thus, creeping flow exists. 

The 1D fibrous media are studied in the present work. 
Following the approach used successfully in several 
applications such as spherical packed beds [31], a unit cell is 
considered for analyzing the media. The unit cell (or basic 
cell) is the smallest volume which can represent the 
characteristics of the whole microstructure. Porous media are 
deemed to be periodic and the unit cells repeat throughout the 
material. Although the velocity distribution in porous 
material is 3D, because of the large length of fibers, 
variations in the ݖ-direction can be neglected for the normal 
flow case, see Fig. 1. Figures 1 and 2 show how unit cells are 
produced for simulating normal and parallel flows. The unit 
cells are selected as the space between adjacent cylinders as 
shown in Figs. 1 and 2. For convenience and without loss of 
generality, the unit cells are assumed to be square. The same 
approach can be followed for rectangular unit cells. Porosity 
for this arrangement can be determined from: 
ߝ ൌ 1 െ πୢమ

ସௌమ  (2)
where d is the fibers diameter and ܵ is the distance between 
adjacent fibers. Since analytical relationships available in the 
literature for permeability are reported for fully developed 
flow, the selected geometries have to be arranged so that the 
fully developed condition is reached. To achieve this, a set of 
7-10 unit cells in series are considered (see Fig. 3) and 
velocity profiles are compared at the entrance to each unit 
cell. For parallel flows, the length of the cylinders is assumed 
to be 40d. This length of the unit cell is expected to result in 
fully developed velocity profile. 

A finite volume approach is used for solving the governing 
equations and second order upwind scheme is selected to 
discretize the governing equations. SIMPLE algorithm is 
employed for pressure-velocity coupling. The inlet velocity 

of the media is assumed to be uniform. Creeping flow regime 
results in fast development of velocity profile. As a result, the 
outflow boundary condition is applied in the computational 
domain outlet, i.e., normal gradient of properties along the 
outlet is zero and the values of all properties at the outlet are 
interpolated from the computational domain. The symmetry 
boundary condition is applied on the side borders of the 
considered unit cells; this means that normal velocity and 
gradient of parallel component of the velocity on the side 
borders are zero.  

RESULTS AND DISCUSSIONS 

Numerical results are obtained from 2D and 3D analyses 
for normal and parallel flows, respectively. Different 
numerical grids are employed to check the grid independency 
of the results, which for brevity are not included here. In the 
following subsections our focus will be on the pressure 
drop/permeability and velocity distribution for the parallel 
and the normal flows. 

Normal flow 

Permeability can be calculated from Darcy’s relationship: 
ܭ ൌ ఓ ௅

∆௉
ܷ஽  (3)

where ∆ܲ is the pressure drop in the unit cell, ܷ஽ is the 
volume averaged velocity, and ܮ is the unit cell length. Once 
the pressure drop is known, permeability can be evaluated 
from Eq. (3). The pressure drops used for calculation of 
permeability are the values obtained from the developed 
regions. The inlet velocity is set equally for all cases; 
therefore, using continuity equation, ܷ஽ can be calculated 
from the following relationship: 
ܷ஽௡௢௥௠௔௟ ൌ ௜௡௟௘௧ݑ

ௌିௗ
ௌ

  (4)
 

 
Figure 1: Unit cell for modeling normal flow. 

 

 
Figure 2: Unit cell for modeling parallel flow. 
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Figure 3: Typical numerical grid used for modeling normal flow, ߝ ൌ 0.65.

For the normal flow, ܮ is equal to ܵ in Eq. (3). The predicted 
values for the non-dimensional permeability, כܭ ൌ  ,dଶ/ܭ
and the related parameters for the normal flow cases are 
reported in Table 1. In Fig. 4 the numerical results of 
permeability are compared with experimental data collected 
from several sources. As can be seen, numerical results are in 
agreement with experimental data. These experiments were 
conducted using different fluids including: air, water, oil, and 
glycerol with a variety of porous materials such as metallic 
rods, glass wool, and carbon fibers. The results of the present 
numerical simulations are compared with the model reported 
in our previous study [21]. The comparison show that the 
analytical model of Tamayol and Bahrami [21] captures the 
trends of the numerical results over the entire range of the 
porosity.  

 
Table 1: The numerical results of normal permeability and 
related parameters, ݀ ൌ 1ሺcmሻ and ݑ௜௡௟௘௧ ൌ 0.05 ሺm/sሻ 

 כܭ ሺcmሻ ܷ஽ሺm/sሻ ∆ܲ ሺܲܽሻܵ ߝ
0.45 1.195 0.0081 61 0.0016 
0.65 1.498 0.0166 17.1 0.0146 
0.8 1.981 0.0248 6.67 0.0736 

0.85 2.288 0.0281 4.9 0.1314 
0.9 2.802 0.0322 2.9 0.3107 

0.95 3.962 0.0374 1.6 0.9257 
0.98 6.265 0.0420 0.77 3.4188 
0.995 12.530 0.0460 0.27 21.352 

 
A comparison of the numerical results and several existing 

analytical models is also presented in Fig. 6; note the 
following: 
• All of the models could capture trends of data in 

higher limits of porosity, i.e., ߝ ൐ 0.9 
• Only the model proposed by Tamayol and Bahrami 

[21] predicts the trends of data accurately over the 
entire range of porosity. 

Determination of the exact micro-scale velocity profile 
requires detail knowledge of the geometry of the medium 
which is not feasible for porous media in general. Although 
for most engineering applications we are not interested in the 
exact form of the flow-field and need to know the pressure 
drop over the basic cell to calculate the permeability, 
knowing the exact micro-scale velocity distribution helps one 
to understand the nature of many engineering processes such 
as separation of particles and filtration. Figure 5 proves that 
the model of Tamayol and Bahrami [21] predicts the 
numerical and experimental data; this model is based on 
integral technique solution and parabolic velocity profile 

assumption: 
ݑ ൌ ଵ

ଶఓ
ௗ௉
ௗ௫

ሺߜଶ െ ,ଶሻݕ 0 ൑ ݔ ൑ ௗ
ଶ
  (5)

ݑ ൌ ଵ
ଶఓ

ௗ௉
ௗ௫

ቀௌమ

ସ
െ ଶቁݕ ൅ ݃ሺߝሻ ଶ௫

ௌିௗ
ഥܷ   , ௗ

ଶ
 ൑ ݔ ൑ ௌ

ଶ
  (6)

where ߜ is the distance between adjacent cylinders: 

ߜ ൌ ௌ
ଶ

െ ටௗమ

ସ
െ ଶݔ   (7)

 

 
Figure 4: Comparison between the present numerical 

results and experimental data, normal flow. 

 
Figure 5: Comparison between the present numerical results, 

experimental data, and the model of [21], normal flow. 
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Figure 6: Comparison between the present numerical results, 
experimental data, and existing models, normal flow. 

The last term in Eq. (6) was added to include the effects of 
the fluid velocity on the unit cell border lines (see Fig. 1) and 
݃ሺߝ) was assumed to be a linear function of porosity: 
݃ሺߝሻ ൌ ߝ1.274 െ 0.274    (8)

In Fig. 7 the numerical velocity profiles are compared with 
the experimental data of Zhong et al. [27] for the normal flow 
through the fibrous media with ߝ ൌ 0.9 in several locations. 
Zhong et al. [27] measured the micro-scale velocity 
distribution in the porosity range of 0.9 ൏ ߝ ൏ .975. The 
solid structures were made of metallic rods and the working 
fluid was glycerol-water mixture. The Reynolds number 
based on the bulk velocity and the rod diameter, ranged from 
0.01 to 0.17; a PIV technique was employed for measuring 
the flow velocity. As shown in Fig. 7 the present numerical 
results and the experimental profiles are in good agreement. 

The numerical and parabolic velocity profiles [21] are 
plotted in several locations of the unit cell in Fig. 8 where 
ߝ ൌ 0.9. Figure 8 shows that the parabolic velocity 
assumption holds only near the entrance region of the unit 
cell. As the flow moves towards the center of the cell, the 
velocity profile changes significantly from the presumed 
parabolic distribution and the numerical and analytical 
velocity profiles do not agree. This can be a result of the 
abrupt change in the unit cell.  

It should be noted that the permeability is not considerably 
affected by the assumption of unreal velocity distribution in 
the central region of the unit cell. This is due to the fact that 
most of pressure drop (directly related to the permeability) 
occurs at the entrance/exit regions of the unit cell where the 
parabolic velocity is in good agreement with the present 
numerical and the experimental data of Zhong et al. [27] and 
the defects are compensated with the unrealistic pressure 
drop in the central region of the unit cell. 

Parallel flow 

Parallel permeability is calculated from Eq. (3). The 
volume averaged and the inlet velocities for parallel flows are 
related: 
ܷ஽௣௔௥௔௟௟௘௟ ൌ ௜௡௟௘௧ݑ (9) ߝ
Using the values of the pressure drop obtained from the 
numerical simulations, parallel permeabilities are listed in 
Table 2.  

Numerical values of the parallel permeability of the square 
arrangement of cylinders are plotted in Fig. 9. Only two 
experimental data points were found in the open literature. 
Therefore, for the verification of the numerical results these 
values are also compared to the numerical data reported by 
Sangani and Yao [12]. Figure 9 shows that the present 
simulation results are in agreement with the experimental and 
the numerical data. 

In the Fig. 10 results of the numerical simulations are 
compared to the analytical models of Happel and Brenner [9], 
Sparrow and Loeffler [10], Drummond and Tahir [13], and 
Tamayol and Bahrami [21] as well as experimental data 
reported by Sullivan [6] and Skartsis and Kardos [28]; one 
can conclude: 
• All of the models capture the trends of numerical data 

in the high limit of porosity, i.e., ߝ ൐ 0.8 
• Only the models proposed by [13] and [21] are accurate 

in lower porosities, i.e., ߝ ൏ 0.3 
• The model of Drummond and Tahir [13] predict the 

parallel permeability the over a wide range of porosity.  
 

 
Figure 7: Comparison of the present numerical and the 

experimental data for the velocity profiles in normal flow and 
ߝ ൌ 0.9. 
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Figure 8: Comparison of the present numerical and parabolic velocity profiles in normal flow, ߝ ൌ 0.9. 

The model proposed by Drummond and Tahir [13] 
estimates numerical results within 10% accuracy, which is 
resulted from their considered velocity profile. However, the 
model of Drummond and Tahir [13] were not accurate for 
normal flows and its accuracy is restricted to parallel 
permeability. 

Table 2: The numerical results of parallel permeability and 
related parameters, ݀ ൌ 1ሺcmሻ and ݑ௜௡௟௘௧ ൌ 0.05 ሺm/sሻ 
 כܭ ሺcmሻ ܷ஽ሺm/sሻ ∆ܲ ሺܲܽሻ ܮ ሺcmሻܵ ߝ

0.215 1 5 0.0107
5 404.3 0.0013 

0.35 1.10 5 0.0175 228.7 0.0038 

0.45 1.19 2 0.0225 56.8 0.0079 

0.55 1.32 5 0.0275 77.6 0.0177 

0.65 1.50 5 0.0325 43 0.0378 

0.8 1.98 5 0.04 12 0.1667 

0.9 2.80 2 0.045 1.4 0.6429 
 

After reviewing the analytical relationships for the parallel 
permeability of ordered fibrous beds, Drummond and Tahir 
[13] proposed that the suitable model of permeability should 
have the following form: 
כܭ ൌ ௄

ௗమ ൌ ቀ2߮ െ ఝమ

ଶ
െ ln߮ െ ቁܥ ଵ

ଵ଺ఝ
  (10)

in which ܥ is a constant and should be determined 
empirically. This equation is very sensitive to value of ܥ. 
When ܥ ൌ 1.5, Eq. (10) yields the model of Happel and 

Brenner [9]. Although Drummond and Tahir [13] proposed 
ܥ ൌ 1.476, our analysis shows that if ܥ ൌ 1.485 , Eq. (10) 
can accurately fit the numerical results over the entire range 
of porosity. Equation (10) is plotted for different values of ܥ 
and compared with the numerical and the experimental data 
in Fig. 11.  

 
Figure 9: Comparison between the present numerical 

results, experimental data, and the numerical results of [12]. 
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Figure 10: Comparison between the present numerical 

results, experimental data, and several analytical models. 
 

The accuracy of the final results obtained from the integral 
technique is dependent on the assumed velocity profiles. 
Hence, once the assumed velocity profiles revises, the 
resultant relationship becomes more accurate. Tamayol and 
Bahrami [21] considered the following parabolic velocity 
profiles: 
ݓ ൌ ଵ

ଶఓ
ௗ௉
ௗ௭

ሺߜଶ െ ଶሻ ,       0ݕ ൑ ݔ ൑ ௗ
ଶ
  

ݓ(11) ൌ ଵ
ଶఓ

ௗ௉
ௗ௭

൤ቀௌ
ଶ
ቁ

ଶ
൅ ቀௌିௗ

ଶ
ቁ

ଶ
െ ቀݔ െ ௌ

ଶ
ቁ

ଶ
െ    , ଶ൨ݕ

   ௗ
ଶ

 ൑ ݔ ൑ ௌ
ଶ
  

 

 
Figure 11: comparison of Eq. (7) for different values of ܥ 

with existing data. 

To plot this equation one has to know the pressure gradient 
beforehand; this can be found directly from the proposed 

relationship [21] and employing Darcy’s law: 

כܭ ൌ ௄
ௗమ ൌ ൝ గ

ଶସఝ
൅ ൥ቆට

గ
ସఝ

െ 1ቇ
ଷ

൅ 2൩ ට ఝ
ଽగ

െ

ቀగ
଼

൅ ఝ
଼

ቁൡ ଵିఝ
ଶ

  
(12)

where ߮ is the solid volume fraction, ߮ ൌ 1 െ  of the ,ߝ
porous medium. In Figs. 12 and 13 the computed velocity 
profiles are compared with parabolic distribution [21] for 
ߝ ൌ 0.65 and ߝ ൌ 0.9, respectively. As can be seen, the form 
of the profiles is different especially in low porosities. 
However, as the porosity increases the non-uniformity in the 
parabolic distribution decreases and it becomes similar to the 
numerical profiles. The considerable difference between 
these velocity profiles reveals the reason of the difference 
between estimated values of permeability from two methods. 
The important point about the integral technique is that 
despite of unrealistic velocity assumption it predicts the 
permeability accurately. If the assumed profiles are verified, 
this method is capable of capturing the data accurately over 
the entire range of porosity.  

SUMMARY AND CONCLUSIONS 

Parallel and normal creeping flows through 1D fibrous 
media are studied numerically. The fibrous material is 
represented by a unit cell which is assumed to be repeated 
throughout the media. The results are used to find the 
pressure drop and the permeability of the solid matrix. The 
numerical values of permeability of square arrangement are 
compared with experimental and numerical data available in 
the open literature and show reasonable agreement. This 
comparison shows that the model developed by Tamayol and 
Bahrami [21] captures the trends of the numerical and the 
experimental data for normal and parallel cases. However, 
differences are considerable especially for parallel flow 
permeability. Therefore, a compact and easy-to-use 
correlation is proposed for the parallel permeability over the 
entire range of porosity.  

The numerical velocity profiles are also compared with 
experimental data and the simple parabolic distribution used 
along with integral method [21] and it reveals that the 
velocity distribution is different from the parabolic 
distribution. Although the assumption of the parabolic 
velocity is not realistic, the resulting model could capture the 
trends of data. However, it is expected that using a more 
realistic velocity profile and the integral technique, will result 
in a more accurate model.  
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(a) (b) 
Figure 12: Comparison of non-dimensional velocity profiles: a) present numerical and b) parabolic profiles [21], parallel flow with 

ߝ ൌ 0.65. 

 

(a) (b) 
Figure 13: Comparison of non-dimensional velocity profiles: a) present numerical and b) parabolic profiles [21], parallel flow with 

ߝ ൌ 0.9. 
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